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Abstract

This thesis numerically investigates the influence of aligned magnetic field, heat

generation and chemical reaction of the flow of an electrically conducting nanofluid

past a nonlinear stretching sheet through a porous medium. The partial differ-

ential equtions governing the flow problems are converted to ordinary differential

equtions by using suitable similarity tramsformations. The transformed equtions

are then solved numerically with the help of shooting method. The influence of

physical parameters such as nonlinear stretching sheet parameter n, magnetic field

parameter M , heat generation parameter Q, Eckert number Ec, Prandtl number

Pr, thermophoresis parameter Nt, Brownain motion parameter Nb, Lewis num-

ber Le and chemical reaction parameter γ2 on the velocity profile, temperature

distribution, concentration profile, skin friction coefficient, Nusselt number and

Sherwood number are studied and presented in graphical and tabular forms. The

temperature distribution is also influenced by the presence of Brownain motion

parameter Nb, thermal radiation parameter and heat generation parameter.
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Chapter 1

Introduction

The boundary layer problems associated to a stretched surface have drawn a lot of

interest during the last few decades, owing to the large number of applications in

engineering and industrial manufacturing processes. The boundary layer, defined

as the layer of fluid in the region of a bounded area where viscosity effects are

prominent, is a valuable concept in physics and fluid mechanics. Furthermore, it

is an area in the flow where the fluid deforms with a relative velocity. Each primary

fluid has a set of fundamental features that plays a vital role in its dynamics. The

stretching and cooling rates are both important in the manufacturing process for

the end product’s effects. Crane [1] was the first to present the 2D flow of an

incompressible liquids within the boundary layer along the stretching surface .

Magnetohydrodynamics (MHD) is a mix of three words: magneto refers to a mag-

netic field, hydro refers to water, and dynamics refers to motion. The study of

the magnetic properties of an electrically conducting fluid, on the other hand, is

known as hydromagnetic flow. Plasmas, liquid metals, salt water, and electrolytes

are examples of magneto fluids. A lot of scholars discussed at flow models that

included hydromagnetic phenomena. Pavlov [2], also studied at the MHD flow

of viscous fluids along a stretching sheet. Sarpakaya [3] studied the flow of spe-

cific types of fluids in a magnetic field. Alfven [4] established the existence of

electromagnetic-hydrodynamic waves. There are a lot of engineering applications

of heat transfer in porous media like geothermal energy recovery, thermal energy

1
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storage, crude oil extraction and flow fittering media [5]. Nanofluids have nanometer-

sized solid particles. They have unique physical and chemical properties. They

possess better heat transfer ability and are used in nuclear reactor, transportation

and electronics [6]. Buoyancy induced flow in a porous medium which is opposite

to horizontal surface is investigated by Cgeng and Chang [7]. Natural convection-

heat transfer from a horizontal plate in porous mediumis investegated by Nield

and Bejan [8].

In order to improve the thermal conductivity of the base fluid, nanofluids are used.

They are used in biomedical and engineering applications. Thermal conductivity

of convectional heat transfer is because of suspension of solid particles.it raised

the heat transfer coefficient. Solid metal has a higher heat conductivity than

liquids. Stability, spreading and dispersion properties of nanofluid surface [9].

The thermal conductiviy of solid metal is higher than of base fluids.

Nanofluid increases the thermal conductivity of the base fluids. They are also

used in cooling and other industrial process. Thermal conductivity of convectional

heat transfer by suspension of solid psrticles is a recent advancement in this field

[10]. Nanoparticles in nanofluids are made up of various metal oxides, carbides,

nitrides or nonmetals. Experimental studies have demonstrated that nanofluids

only require up to 5% volume fraction of nanoparticles to provide effective heat

transfer increases [11].

Nanofluids are also used in fuel cell, nuclear reactors and transportation and many

more [12]. Khan and Pop [13] reported that using Buongiorrios model [14] the

flow of nanofluid over a strtching sheets. It accelerates the coefficient of heat

trnsfer. Using finite element and finite difference approaches to solve a nonlinear

stretching sheet Rana and Bhargara [15] conducted similar research. Makinde

and Aziz [16] discussed the effect of convective surface boundary condition on the

boundary layer flow over a stretching sheet. Khan Mustafa et al [17] discussed

into the boundary layer flow for an exponential stretching sheet.

Khan and Shehzad [18] investigated the influence of thermophoresis and Brownain

movement on nanofluid and heat transfer rate through a dynamic oscillation sheet.
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Many authors [19–24] have contributed to the study of electrically conducting

nanofluids in disciplines such as plasma studies, MHD pumps, MHD generators,

and bearings. Other important considerations are the effects of viscous discipation,

thermal radiation or heat generation on nanofluid boundary layer flow, as well

as the features of heat transfer rate immeresed in porous medium. Ahmad et

al. [25] studied how MHD viscous flow behaved in a porous material across an

exponentially stretched surface with radiative effect. Williamson fluid film flow and

heat transfer in the presence of thermal radiation through a porous material across

a linear stretching sheet were investigated Shah et al. [26]. In their investigation,

they discovered that raising the porosity parameter reduces the flow of thin films

and the Lorentz force has an impact on the flow of liquid films. MHD boundary

laye flow of nanofluid in porous medium was studied by Zeeshan et al. [27]. Pal

and Mandal [28] showed the effect of thermal radiation and heat generation on

convective nanofluid flow through a stagnation point in a porous medium. Rama

and Chandra [29] used a hybrid technique to numerically investigate the effects

of viscous dissipation on MHD boundary layer nanofluid flow through a nonlinear

stretching sheet in a porous medium in their paper Haroun et al. [30] developed

the spectral relaxation technique to investigate the effects of the chemical reaction,

viscous dissipation and radiation on MHD nanofluid flow in a porous medium, and

discovered that as the porosity parameter increases, the velocity field decreases

while the temperature distribution increases. On the same topic, Geng et al. [31]

investigated MHD nanofluid flow and rate of heat transfer between porous medium

and stretching sheet.

Malvandi et al. [32] demonstrated a stagnation point nanofluid flow over a nonlin-

ear stretching sheet using suction. They demonstrate that as the suction parameter

is increased, the heat transfer rate increase, depending on the heat blowing pa-

rameter. Khan and Shehzad [33] investigated the influence of thermophoresis and

Brownain motion on third-grade nnofluid and rate of heat transmission through

an oscillation dynamic sheet.

The porous medium has many applications in biochemical catalytic vessels, energy

diligences, transport development in human lungs and kidneys, thermal isolation,
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strategy of dense medium heat exchangers and geothermal processes, etc. Fur-

ther, building material, mineral, leakage of water in stream beds and timber are

few specimens of naturally obtainable porous medium.Even for the flow of non-

Newtonian liquids, the established Darcy’s law is usually applied. Chamkha and

Rashad [34] discussed the effect of chemical reactions on MHD flow when heat

is generated or absorbed by a uniform vertical permeable surface. The impact of

chemical reactions with radiation on heat and mass transfer along the MHD flow

was explained by Das [35].

1.1 Thesis Contributions

The current study focuses on numerical solution of MHD nanofluid flow with an

angled magnetic field, heatt generation and chemical reaction. By using similarity

transformations, the proposed nonlinear PDEs are trasnsformed into the systerm

of ODEs . The shooting method is also to get the numerical results of nonlinear

ODEs. The numerically results are computed by using MATLAB. The impact

of significant parameters on velocity distribution, temperature distribution and

concentration distribution, skin friction coefficient, local Nusselt number and local

Sherwood number have been discussed in graphs and tables.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.

Chapter 3 provides an analytical investigation of MHD nanofluid flow in a porous

medium caused by a nonlinear stretching sheet. The numerical results of the
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governing flow equations are derived by the shooting method.

Chapter 4 extends the model flow discussed in Chapter 3 by including the im-

pacts of inclined magnetic field, heat generation and chemical reaction.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter provides some basic definitions and regulating laws that will be useful

in the upcomming chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [36]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [37]

Definition 2.1.3 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, that branch of science is called fluid dynamics.” [37]

Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [37]

6
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Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [37]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called nu. Mathematically,

ν =
µ

ρ
.” [37]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [38]

Definition 2.1.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp
,

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density 

and Cp is the specifc heat at constant pressure.” [39]
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2.2 Types of Fluid

Definition 2.2.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [37]

Definition 2.2.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [37]

Definition 2.2.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [37]

Definition 2.2.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of 

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = µ

(
du

dy

)m
.” [37]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid 

flow and magnetic fields. The fluids in question must be electrically conducting 

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas) 

and strong electrolytes.” [40]



Basic Terminologies 9

2.3 Types of Flow

Definition 2.3.1 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [37]

Definition 2.3.2 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [37]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k is constant.” [37]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [37]

Definition 2.3.5 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at 

any point in open channel flow do not change with respect to time, the flow is said
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to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [37]

Definition 2.3.6 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of 

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [37]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by solid surfaces are called internal or duct flows.” [36]

Definition 2.3.8 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be external flows.” [36]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal 

energy from one point to another within a medium or from one medium to another 

due to the occurrence of a temperature difference.” [38]

Definition 2.4.2 (Conduction)
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“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [38]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as the energy transport affected by

the motion of a fluid. The convection heat transfer between two dissimilar media

is governed by Newtons law of cooling.” [38]

Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely due to the temperature of the medium.” [38]

2.5 Dimensionless Numbers

Definition 2.5.1 (Eckert Number)

“It is a dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [36]

Definition
 
2.5.2

 
(Prandtl

 
Number)

“It
 
is

 
the

 
ratio

 
between

 
the

 
momentum

 
diffusivity

 
ν

 
and

 
the

 
thermal

 
diffusivity

 

α.
 
Mathematically,

 
it

 
can

 
be

 
defined

 
as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k
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where µ represents the dynamic viscosity, Cp denotes the specific heat and k stands

for the thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [36]

Definition 2.5.3 (Skin Friction Coefficient)

“The skin friction coefficient is typically defined as

Cf =
2τw
ρw2
∞

where τw denotes the local wall shear stress and ρ is the density and w∞ is the

free stream velocity (usually taken outside the boundary layer or at the inlet). It

expresses the dynamic friction resistance originating is viscous fluid flow around a

fixed wall” [41]

Definition 2.5.4 (Nusselt Number)

“It is the relationship between the convective to the conductive heat transfer

through the boundary layer of the surface. It is a dimensionless number which

was first introduced by the German mathematician Nusselt. Mathematically, it is

defined as

Nu =
hL

k

where h stands for the convection heat transfer, L for the characteristic length

and k stands for thermal conductivity.” [42]

Definition 2.5.5 (Sherwood Number)

“It is a nondimensional quantity which shows the ratio of the mass transport

byconvection to the transfer of mass by diffusion.

Mathematically,

Sh =
kL

D
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where L is the characteristics length, D is the mass diffusivity and k is the mass

transfer” coeffcient.” [43]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
UL

ν
,

where U denotes the free stream velocity, L is the characteristic length and ν

stands for the kinematic viscosity.” [37]

2.6 Governing Laws

2.6.1. Law of Consevation of Mass

“The principle of conservation of mass can be stated as the time rate of change of

mass in fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [38]

2.6.2. Law of Conservation of Momentum

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons third law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [38]
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2.6.3. Law of Consevation of Energy

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [38]

2.7 Shooting Method

It is a numerical method for solving boundary value problems that are expressed

as ordinary differential equations. The system of first order equation is created

by converting the ordinary differential equation(s) into the system of first order

equation(s). The condition(s) that are missing have been gussed. An appropriate

methodology, such as the Runge-Kutta method of order four, is used to solve the

resulting IVP. If the solution does not meet the requirements, the missing con-

ditions are refined by some suitable numerical techniques e.g, Newton’s method.

To elaborate the shooting method a couple of boundary value problems have been

considered in the upcomming discussion.

2.7.1 A Second Order Boundary Value Problem

Consider the nonlinear boundary value problem that follows.

f ′′(x) = f(x)f ′(x) + 2f 2(x)

f(0) = 0, f(G) = J.

 (2.1)

To reduce the order of the above boundary value problem, introduce the following

notations.
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f = Y1 f ′ = Y ′1 = Y2 f ′′ = Y ′2 . (2.2)

As a result, (2.1) is transformed into the first order ODEs system shown below.

Y ′1 = Y2, Y1(0) = 0, (2.3)

Y ′2 = Y1Y2 + 2Y 2
1 , Y2(0) = w, (2.4)

where w is the missing initial condition.

The above IVP will be numerically solved by the RK-4 method. The missing

condition w is to be chosen such that

(Y1, w)x=G = J. (2.5)

For convenience, now onward (Y1, w)x=G will be denoted by Y1(w).

Let us further denote Y1(w)− J by H(w), so that

H(w) = 0. (2.6)

The above equation can be solved by using Newton’s method with the following

iterative formula.

w(n+1) = w(n) −

(
H(w)
∂H
∂w

)
w=w(n)

or

w(n+1) = w(n) −

(
Y1(w)− J

∂Y1
∂w

)
w=w(n)

. (2.7)

To find ∂Y1
∂w

, introduce the following notations.

∂Y1
∂w

= Y3,
∂Y2
∂w

= Y4. (2.8)
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As a result of these new notations, the Newton’s iterative scheme, will then get

the form.

w(n+1) = w(n) − Y1(w
(n))− J

Y3(w(n))
. (2.9)

Now differentiating the system of two first order ODEs (2.3)-(2.4) with respect to

w, we get another system of ODEs, as follows.

Y ′3 = Y4, Y3(0) = 0. (2.10)

Y ′4 = Y3Y2 + Y1Y4 + 4Y1Y3, Y4(0) = 1. (2.11)

Writing all the four ODEs (2.3) and (2.4), (2.10) and (2.11) together, we have the

following initial value problem.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y1Y2 + 2Y 2
1 , Y2(0) = w.

Y ′3 = Y4, Y3(0) = 0.

Y ′4 = Y3Y2 + Y1Y4 + 4Y1Y3, Y4(0) = 1.


(2.12)

The above system together will be solved numerically by the Runge-Kutta method

of order four.

The stopping criteria for the Newton’s technique is set as,

| Y1(w)− J |< ε,

where ε > 0 is an arbitrarily small positive number.

The algorithmic form of the shooting method for this problem and similarly, all

second order two point boundary value problems in the form of ordinary differen-

tial equations have been explained in the following sectopns.
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Step I:

Convert the provided second order differential equation to a system of four first

order ODEs, similar to the ones in (2.12).

Step II:

Choose a missing condition w = w(0) in (2.12) and solve this system by (say) RK-4

mathod.

Step III:

Choose a sufficiently small number ε > 0.

Step IV:

If |(Y1, w(0) − J)| < ε , then stop

If |(Y1, w(0)−J)| > ε , then compute the next gusess w(1) by using (2.9) with n = 0

and go back to Step-II and take w = w(1) in it.

Continue repeating Step-II and then Step-IV until in Step-IV, we get

|(Y1, w(k) − J)| < ε

for some k ε 0,1,2,3,......w, where w is the whole number.



Chapter 3

MHD Nanofluids Flow and Heat

Transfer Induced by a Nonlinear

Stretching Sheet in the Porous

Medium

3.1 Introduction

The numerical analysis of MHD nanofluid flow across a nonlinear stretching sheet

saturated in aporous medium in the presence of a magnetic field and heat radiation

is discussed in this chapter. Using the similarity transformations, the governing

nonlinear PDEs are transformed into a system of dimensionless ODEs.

In order to solve the ODEs, the shooting technique is implemented in MATLAB.

The numerical solution for various parameters for the dimensionless velocity pro-

file, temperature distribution, and concentration distribution is described at the

end of this chapter.

 Investigation of obtained numerical results are given through the tables and 

graphs.

18
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3.2 Mathematical Modeling

Figure 3.1: Systematic representation of physical model.

A 2D flow of MHD nanofluid past a nonlinear stretching sheet with y = 0 has been

investigated. The flow is considered along y-axis with y > 0. It is assumed that

the variable stretching velocity and the variable magnetic field of the nanofluid

flow are Uw(x)=axn and B(x)=B0x
(n−1)/2.

At the stretching surface, the wall temperature Tw and the nanoparticle fraction Cw 

have been considered to be constant. The ambient temperature and nanoparticle 

fraction are indicated by T∞ and C∞, respectively, as y approaches infinity.
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The set of equations describing the flow are as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2(x)u

ρf
− ν

k
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

(
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
)

(3.3)

− 1

(ρcp)f

∂qr
∂y

+
ν

cp

(
∂T

∂y

)2

,

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
. (3.4)

The associated BCs have been taken as.

y = 0 : Uw = axn, v = 0, T = Tw, C = Cw,

y →∞ : u→ 0, v → 0, T → T∞, C → C∞

 (3.5)

In the above model, x axis is along the sheet, the direction perpendicular to the

sheet is y, u and v are the horizontal and vertical velocities. The radiative heat

flux is given by

qr = −4σ∗

3k∗
∂T 4

∂y
,

The Stefan-Boltzman constant is σ∗, and the absorption coefficient is k∗. If the

temperature difference is minimal, the temperature T 4 can be increased using the

Taylor series to roughly T∞, as shown below.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

T 4 = T 4
∞ + 4T 3

∞(T − T∞),

T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞,

T 4 = −3T 4
∞ + 4T 3

∞T.

T 4 = 4T 3
∞T − 3T 4

∞.

For the conversion of the mathematical model (3.1)-(3.4) into asystem of ODEs,
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the following similarity transformations have been obtained

ζ = y

√
a(n+ 1)

2ν
x

n−1
2 , u = axnf ′(ζ)

v = −x
n−1
2

√
νa(n+ 1)

2

(
f(ζ) +

(
n− 1

n+ 1

)
ζf ′(ζ)

)
θ(ζ) =

T − T∞
Tw − T∞

, φ(ζ) =
C − C∞
Cw − C∞

.


(3.6)

The detailed procedure for the conversion of (3.1)-(3.4) into the dimensionless

form has been presented below,

ζ = y

√
a(n+ 1)

2ν
x

n−1
2 ,

∂ζ

∂x
= y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2 ,

∂u

∂x
=

∂

∂x
(af ′(ζ)xn) ,

= a
∂

∂x
(f ′(ζ)xn) ,

= a

(
nxn−1f ′(ζ) + xnf ′′(ζ)

∂ζ

∂x

)
,

= a

(
nxn−1f ′(ζ) + xnf ′′(ζ)y

√
a(n+ 1)

2ν

(
n− 1

2

)
x

n−3
2

)
,

= a

(
nxn−1f ′(ζ) + xn−1f ′′ζ

(
n− 1

2

))
,

= axn−1
(
nf ′(ζ) + ζf ′′(ζ)

(
n− 1

2

))
. (3.7)

v = −x
n−1
2

√
νa(n+ 1)

2

(
f(ζ) +

(
n− 1

n+ 1

)
ζf ′(ζ)

)
.

∂v

∂y
=

∂

∂y

[
−x

n−1
2

√
(n+ 1)νa

2

(
f(ζ) +

(
n− 1

n+ 1

)
ζf ′(ζ)

)]

= −x
n−1
2

√
(n+ 1)νa

2

[
f ′(ζ)

∂ζ

∂y
+

(
n− 1

n+ 1

)
ζf ′′(ζ)

∂ζ

∂y
+

(
n− 1

n+ 1

)
f ′(ζ)

∂ζ

∂y

]

= −x
n−1
2

√
(n+ 1)νa

2

[
f ′(ζ) +

(
n− 1

n+ 1

)
ζf ′′(ζ)

]√
(n+ 1)a

2νf
x

n−1
2

− x
n−1
2

√
(n+ 1)νa

2

((
n− 1

n+ 1

)
f ′(ζ)

)√
(n+ 1)a

2ν
x

n−1
2

= −a
2
xn−1(n+ 1)

(
f ′(ζ) +

(
n− 1

n+ 1

)
ζf ′′(ζ) +

(
n− 1

n+ 1

)
f ′(ζ)

)
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= −a
2
xn−1 (f ′(ζ)(n+ 1) + (n− 1)ζf ′′(ζ) + (n− 1)f ′(ζ))

= −a
2
xn−1f ′(ζ)(n+ 1 + n− 1)− a

2
xn−1(n− 1)ζf ′′(ζ)

= −a
2
xn−12nf ′(ζ)− a

2
xn−1(n− 1)ζf ′′(ζ)

= −axn−1nf ′(ζ)− axn−1
(
n− 1

2

)
ζf ′′(ζ). (3.8)

Equation (3.1) is easily satisfied by using (3.7) and (3.8) as follows

∂u

∂x
+
∂v

∂y
= axn−1nf ′(ζ) + axn−1

(
n− 1

2

)
ζf ′′(ζ)− axn−1nf ′(ζ)

− axn−1
(
n− 1

2

)
ζf ′′(ζ),

∂u

∂x
+
∂v

∂y
= 0. (3.9)

Now, for the momentum equation (3.2) the following derivatives are required,

∂u

∂y
=

∂

∂y
(axnf ′(ζ))

= a
∂

∂y
(xnf ′(ζ))

= axnf ′′(ζ)
∂ζ

∂y

= axnf ′′(ζ)

√
a(n+ 1)

2ν
x

n−1
2 . (3.10)

∂2u

∂y2
= axnf ′′′(ζ)

√
a(n+ 1)

2ν
x

n−1
2
∂ζ

∂y
,

= af ′′′(ζ)

√
a(n+ 1)

2ν
x

n−1
2 xn

√
a(n+ 1)

2ν
x

n−1
2

= a2x2n−1f ′′′(ζ)

(
n+ 1

2ν

)
. (3.11)

u
∂u

∂x
= axnf ′(ζ)

(
axn−1nf ′(ζ) + axn−1

(
n− 1

2

)
ζf ′′(ζ)

)
= a2x2n−1nf ′2(ζ) + a2x2n−1

(
n− 1

2

)
ζf ′(ζ)f ′′(ζ). (3.12)

v
∂u

∂y
= −

√
aν(n+ 1)

2
x

n−1
2

(
ζf ′(ζ)

(
n− 1

n+ 1

)
+ f(ζ)

)(
axnf ′′(ζ)

√
a(n+ 1)

2
x

n−1
2

)
= −

√
aνf (n+ 1)

2
x

n−1
2 f ′(ζ)ζ

n− 1

n+ 1
axnf ′′(ζ)

√
a(n+ 1)

2ν
x

n−1
2
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−
√
aν(n+ 1)

2
x

n−1
2 f(ζ)axnf ′′(ζ)

√
a(n+ 1)

2ν
x

n−1
2

= −a
2(n+ 1)

2
x2n−1f ′(ζ)f ′′(ζ)ζ

(
n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(ζ)f ′′(ζ). (3.13)

Using (3.12) and (3.13), the left side of (3.2) becomes

u
∂u

∂x
+ v

∂u

∂y
= a2x2n−1nf ′2(ζ) + a2x2n−1

(
n− 1

2

)
ζf ′(ζ)f ′′(ζ)

− a2(n+ 1)

2ν
x2n−1f(ζ)f ′′(ζ)

)
= a2x2n−1nf ′2(ζ) + a2x2n−1

(
n− 1

2

)
ζf ′(ζ)f ′′(ζ)

− a2(n+ 1)

2
x2n−1ξf ′(ζ)f ′′(ζ)

(
n− 1

n+ 1

)
− a2(n+ 1)

2
x2n−1f(ζ)f ′′(ζ)

=

(
a2x2n−1nf ′2(ζ)− a2(n+ 1)

2
x2n−1f(ζ)f ′′(ζ)

)
,

= a2x2n−1
(
nf ′2(ζ)−

(
n+ 1

2

)
f(ζ)f ′′(ζ)

)
. (3.14)

Using (3.11), in the right side of (3.2) becomes

ν

(
∂2u

∂y2

)
− σB2(x)

ρf
u− ν

k
u = ν

(
a2x2n−1f ′′′(ζ)

(
n+ 1

2ν

))
− σB2(x)a

ρf
xn−1f ′(ζ)− ν

k
axn−1f ′(ζ)

= a2x2n−1f ′′′(ζ)

(
n+ 1

2

)
− σB2

0a

ρf
x2n−1f ′(ζ)− ν

k
a2x2n−1f ′(ζ). (3.15)

Comparing (3.14) and (3.15), the dimensionless form of (3.2) can be written as

u
∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂y2

)
− σB2(x)

ρf
u− ν

k
u,

a2x2n−1

(
nf ′2(ζ)−

(
n+ 1

2

)
f(ζ)f ′′(ζ)

)
= a2x2n−1f ′′′(ζ)

(
n+ 1

2ν

)
− σB2

0a

ρ
x2n−1f ′(ζ)− ν

k
a2x2n−1f ′(ζ),(

2n

n+ 1

)
f ′2(ζ)− f(η)f ′′(ζ) = f ′′′(ζ)−Mf ′ −Gf ′(ζ).
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f ′′′(ζ) =

(
2n

n+ 1

)
f ′2(ζ)− f(ζ)f ′′(ζ)− (M +G) f ′(ζ)

.f ′′′(ζ)−
(

2n

n+ 1

)
f ′2(ζ) + f(ζ)f ′′(ζ)− (M +G) f ′(ζ) = 0 (3.16)

Now, for the conversion of energy equation (3.3) the following derivatives are

required,

T = θ(ζ)(Tw − T∞) + T∞.

∂T

∂x
= (Tw − T∞)θ′(ζ)

∂ζ

∂x
,

= (Tw − T∞)y

√
a(n+ 1)

2ν
x

n−3
2

(
n− 1

2

)
θ′(ζ) (3.17)

∂T

∂y
= (Tw − T∞)θ′(ζ)

∂ζ

∂y

= (Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′(ζ). (3.18)

∂2T

∂y2
= (Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′′(ζ)

∂ζ

∂y
,

∂2T

∂y2
= (Tw − T∞)

(
a(n+ 1)

2ν

)
xn−1θ′′(ζ). (3.19)(

∂u

∂y

)2

=

(
ax

3n−1
2

√
a(n+ 1)

2ν
f ′′(ζ)

)2

(
∂u

∂y

)2

= a2x3n−1
a(n+ 1)

2ν
f ′′2(ζ). (3.20)(

∂T

∂y

)2

= xn−1
(n+ 1)a

2ν
(Tw − T∞)2θ′2(ζ). (3.21)

τ

(
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2
)

= τ

(
DT

T∞
xn−1

(n+ 1)a

2νf
(Tw − T∞)2θ′2(ζ)

)

+ τ

(
DB

[
x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ζ)

][
x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ζ)

])

= τDBx
n−1
(

(n+ 1)a

2ν

)
(Tw − T∞)(Cw − C∞)θ′(ζ)φ′(ζ)

+ τ
DT

T∞
xn−1

(
(n+ 1)a

2ν

)
(Tw − T∞)2θ′2(ζ)

=
τDB(Cw − C∞)

ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(η)φ′(ζ)

+
τDT (Tw − T∞)

T∞ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′2(ζ), (3.22)
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∂qr
∂y

= −16σ∗

3k∗
T 3
∞
∂2T

∂y2
,

∂qr
∂y

= −16σ∗

3k∗
T 3
∞x

n−1a(n+ 1)

2ν
(Tw − T∞)θ′′(ζ). (3.23)

(T − T∞) = ((Tw − T∞)θ(ζ) + T∞)− T∞

(T − T∞) = (Tw − T∞)θ(ζ). (3.24)

Using (3.17) and (3.18) in the left side of (3.3), we get

u
∂T

∂x
+ v

∂T

∂y
= axnf ′(ζ)

[
(Tw − T∞)

(
n− 1

2x

)
ζθ′(ζ)

]
+

[
− x

n−1
2

√
a(n+ 1)

2ν[(
n− 1

n+ 1

)
ζf ′(ζ) + f(ζ)

]][
(Tw − T∞)

√
a(n+ 1)

2ν
x

n−1
2 θ′(ζ)

]
,

= axn−1(Tw − T∞)

(
n− 1

2

)
ζf ′(ζ)θ′(ζ)

−
(

(n+ 1)a

2

)
xn−1(Tw − T∞)

(
n− 1

n+ 1

)
ζθ′(ζ)f ′(ζ)

−
(
a(n+ 1)

2

)
xn−1(Tw − T∞)f(ζ)θ′(ζ),

= axn−1
(
n− 1

2

)
(Tw − T∞)ζf ′(ζ)θ′(ζ)

− axn−1
(
n− 1

2

)
(Tw − T∞)ζf ′(ζ)θ′(ζ)

− axn−1
(
n+ 1

2

)
(Tw − T∞)f(ζ)θ′(ζ)

u
∂T

∂x
+ v

∂T

∂y
= −axn−1

(
n+ 1

2

)
(Tw − T∞)f(ζ)θ′(ζ). (3.25)

Using (3.19)-(3.23) in the right side of (3.3), we get

α
∂2T

∂y2
+ τ

(
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2
)

+
ν

Cp

(
∂u

∂y

)2

− 1

(ρCp)f

∂qr
∂y

= α

(
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ)

)

+
τDB(Cw − C∞)

ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(ζ)φ′(ζ)

+
τDT (Tw − T∞)

T∞ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′2(ζ),
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+
ν

Cp

(
a2x3n−1

(
a(n+ 1)

2ν

)
f ′′2(ζ)

)

− 1

(ρCp)f

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
(
a(n+ 1)

2ν

)
θ′′(ζ)

)
(3.26)

With the help of (3.25) and (3.26), the dimensionless form of (3.3) shown is ob-

tained, as below.

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

(
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2
)

+
ν

Cp

(
∂u

∂y

)2

− 1

(ρCp)nf

∂qr
∂y

.

⇒− axn−1
[(

n+ 1

2

)
(Tw − T∞)f(ζ)θ′(ζ)

]
= α

[
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ)

]
+
τDB(Cw − C∞)

ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(ζ)φ′(ζ) +

τDT (Tw − T∞)

T∞ν
,

xn−1
(

(n+ 1)a

2

)
(Tw − T∞)θ′2(ζ) +

ν

Cp

(
a2x3n−1

(
a(n+ 1)

2ν

)
f ′′2(ζ)

)
− 1

(ρCp)f

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
(
a(n+ 1)

2ν

)
θ′′(ζ)

)
,

⇒− f(ζ)θ′(ζ) =
α

ν
θ′′(ζ) +

(ρCp)p
(ρCp)f

DB(Cw − C∞)

ν
θ′(ζ)φ′(ζ)

+
(ρCp)p
(ρCp)f

DT (Tw − T∞)

T∞ν
θ′2 +

ν

Cp(Tw − T∞)
a2x2nf ′′2 +

16σ∗T 3
∞

(ρCp)fν3k∗
θ′′(ζ)

− fθ′ = 1

Pr
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + Ecf ′′2 +

4

3Pr
Rθ′′2

1

Pr
θ′′(ζ) +

4

3Pr
Rθ′′2 + fθ′ +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + Ecf ′′2 = 0(

1 +
4

3
R

)
θ′′ + Pr

(
fθ′ +Nbθ′φ′ +Ntθ′2 + Ecf ′′2

)
= 0. (3.27)

Now, we include below the procedure for the conversion of equation (4.4) into the

dimensionless form.

φ(ζ) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)φ(ζ) + C∞.

∂C

∂x
= (Cw − C∞)φ′(ζ)

∂ζ

∂x
,
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∂C

∂x
=

(
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ). (3.28)

∂C

∂y
= (Cw − C∞)φ′(ζ)

∂ζ

∂y
,

∂C

∂y
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ). (3.29)

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ)

∂ζ

∂y
,

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ)

(
x

n−1
2

√
a(n+ 1)

2ν

)
,

∂2C

∂y2
= xn−1

(√
a(n+ 1)

2ν

)2

(Cw − C∞)φ′′(ζ),

∂2C

∂y2
= xn−1

a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ). (3.30)

∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ζ). (3.31)

Using (3.28) and (3.29) in left hand side of (3.4)

u
∂C

∂x
+ v

∂C

∂y
= axnf ′(ζ)

((
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ)

)
+

(
n− 1

2
xn−1yaf ′(ζ)− x

n−1
2
n+ 1

2

√
2νa

n+ 1
f(ζ)

)
x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ),

u
∂C

∂x
+ v

∂C

∂y
= ax

3n−3
2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ζ)φ′(ζ)

− x
3n−3

2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ζ)φ′(ζ)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ)

u
∂C

∂x
+ v

∂C

∂y
= −axn−1

(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ). (3.32)

Using (3.30) and (3.31) in right hand side of (3.4), the following is obtained

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
= DBx

n−1
(
a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ζ)

+
DT

T∞
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ) (3.33)
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Comparing (3.32) and (3.33)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ)

= DBx
n−1
[
a(n+ 1)

2ν

]
(Cw − C∞)φ′′(ζ) +

DT

T∞
xn−1

[
a(n+ 1)

2ν

]
(Tw − T∞)θ′′(ζ).

Dividing both side DBx
n−1a

(
n+1
2ν

)
(Cw − C∞)

− ν

DB

f(ζ)φ′(ζ) = φ′′(ζ) +
DT (Tw − T∞)

T∞DB(Cw − C∞)
θ′′(ζ)

⇒ φ′′(ζ) + Lef(ζ)φ′(ζ) +
DT τ(Tw − T∞)ν

T∞νDBτ(Cw − C∞)
θ′′(ζ) = 0.

⇒ φ′′(ζ) + Lef(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ) = 0. (3.34)

The corresponding BCs are transformed into the non-dimensional form through

the following procedure,

u = uw(x) = axn, at y = 0.

⇒ u = af ′(ζ)xn at ζ = 0

⇒ af ′(ζ) = axn at ζ = 0

⇒ f ′(ζ) = 1, at ζ = 0.

⇒ f ′(0) = 1.

v = 0 at y = 0.

⇒ − x
n−1
2

√
2νa

n+ 1

(
n+ 1

2

)
f(ζ)− axn−1y

(
n− 1

2

)
f ′(ζ) = 0,

at ζ = 0.

⇒ − x
n−1
2

√
aν(n+ 1)

2
f(0) = 0, at ζ = 0.

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ζ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ζ)(Tw − T∞) = (Tw − T∞),
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⇒ θ(ζ) = 1, at ζ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ φ(ζ)(Cw − C∞) + C∞ = Cw,

⇒ φ(ζ)(Cw − C∞) = (Cw − C∞),

⇒ φ(ζ) = 1, at ζ = 0.

⇒ φ(0) = 1.

u→ 0, as y →∞.

⇒ af ′(ζ)xn → 0,

⇒ axnf ′(ζ)→ 0,

⇒ f ′(ζ)→ 0, as ζ →∞.

T → T∞, as y →∞.

⇒ θ(ζ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ζ)(Tw − T∞)→ 0, as ζ →∞.

⇒ θ(ζ)→ 0, as ζ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ζ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ζ)(Cw − C∞)→ 0, as ζ →∞.

⇒ φ(ζ)→ 0, as ζ →∞.

The final dimensionless form of the governing model, is

f ′′′(ζ)−
(

2n

n+ 1

)
f ′2(ζ) + f(ζ)f ′′(ζ)− (M +G) f ′(ζ) = 0 (3.35)(

1 +
4

3
R

)
θ′′(ζ) + Pr

(
Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + Ecf ′′2(ζ)

)
= 0. (3.36)

φ′′(ζ) + Lef(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ) = 0. (3.37)
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The associated BCs (3.5) in the dimensionless form are,

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1.

f ′ → 0, θ → 0, φ→ 0 as ζ →∞.

 (3.38)

Different dimensionless parameters used in equations (3.35) and (3.37) are formu-

lated as follows

M =
2σB2

0

ρfa(n+ 1)
, G =

ν

k
, R =

4σ∗T 3
∞

kk∗
, Nb =

τDB(Cw − C∞)

ν

Pr =
ν

α
, Ec =

U2
w

cp(Tw − T∞)
, Le =

ν

DB

, Nt =
τDT (Tw − T∞)

T∞ν
.

The skin friction coefficient, is given as follows.

Cf =
µ

ρU2
w(x)

(
∂u

∂y

)
y=0

. (3.39)

To achive the dimensionless form of Cf the following steps will be helpful,

Since

Cf =
µ

ρUw(x)2

(
∂u

∂y

)
y=0

,

=
µ

ρfa2x2n

(
axnf ′′(ζ)x

n−1
2

√
(n+ 1)a

2ν

)
,

Cf =
µ

ρfa2x2n(1− φ)2.5

(
axnf ′′(ζ)x

n−1
2

√
(n+ 1)a

2ν

)
.

⇒ =
νρa

3
2x

3n−1
2

ρfa2x2n(1− φ)2.5

√
(n+ 1)

2ν
f ′′(ζ)

=
ν

a
1
2x

n+1
2 (1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ζ)

=
1

Re
1
2
x (1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ζ).

⇒ Re
1
2
xCf =

1

(1− φ)2.5

(
n+ 1

2

) 1
2

f ′′(ζ), (3.40)

where Re denotes the Reynolds number defined as Re = xux(x)ν
.
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Local Nusselt number is defined as follow.

Nux =
xqw

k(Tw − T∞)
. (3.41)

To achive the dimensionless form of Nux, the following steps will be helpful

Since

qw = −
(
∂T

∂y

)
y=0

, (3.42)

Nux = − x

k(Tw − T∞)

(
∂T

∂y

)
y=0

.

Nux = − x

k(Tw − T∞)

(
(n+ 1)a

2ν

) 1
2

x
n−1
2 (Tw − T∞)θ′(ζ).

= −
√
a(n+ 1)

2ν
x

n+1
2 θ′(ζ),

= −
√
n+ 1

2
θ′(ζ)

√
axn+1

ν
,

= −
√
n+ 1

2
θ′(ζ)

√
axn+1

ν
,

= −
√
n+ 1

2
θ′(ζ)Re

1
2
x ,

Re
−1
2
x Nux = −

(
n+ 1

2

) 1
2

θ′(ζ). (3.43)

The local Sherwood number are defined as

Shx =
xqm

DB(Cw − C∞)
. (3.44)

To achive the dimensionless form of Shx, the following step will be helpful,

Since

qm = −DB

(
∂C

∂y

)
y=0

, (3.45)

Shx = − xDB

DB(Cw − C∞)

(
∂C

∂y

)
y=0

.
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= − x

(Cw − C∞)
x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ),

= −x
n+1
2

√
a(n+ 1)

2ν
φ′(ζ),

= −
√
axn+1

ν

(
n+ 1

2

) 1
2

φ′(ζ),

= −Re
1
2
x

(
n+ 1

2

) 1
2

φ′(ζ),

Shx

Re
1
2
x

= −

(
n+ 1

2

) 1
2

φ′(ζ),

Re
− 1

2
x Shx = −

(
n+ 1

2

) 1
2

φ′(ζ), (3.46)

3.3 Numerical Method for Solution

The shooting method has been used to solve the ordinary differential equation

(3.35). To get the numerical solution, the unbounded domain [0,∞[ has been re-

place by the bounded domain [0, ε∞[, where the real number ε∞ > 0 is chosen with

the objective that the variations in the solution for ε > ε∞ are ignorable resulting

in an asymptotic convergence of the solution. The following notations have been

considered.

f = Z1, f ′ = Z ′1 = Z2, f ′′ = Z ′′1 = Z ′2 = Z3, f ′′′ = Z ′3.

As a result the momentum equation is converted into the following system of first

order ODEs.

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = Z3, Z2(0) = 1.

Z ′3 =

(
2n

n+ 1

)
Z2

2 − Z1Z3 + (M +G)Z2, Z3(0) = s.
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The above IVP will be numerically solved by the RK-4 method. The missing

condition s is to be chosen in such a way that

Z2(s) = 0.

It is important to mention that Z2(s) the value of Z2(s) at ε = ε∞ for the chosen

missing condition s. Newton’s method will be used to find s. This method has

the following iterative scheme.

s(n+1) = s(n) − Z2(s
(n))

( ∂
∂s

(Z2(s)))s=s(n)

.

We further introduce the following notations,

∂Z1

∂s
= Z4,

∂Z2

∂s
= Z5,

∂Z3

∂s
= Z6.

As a result of these new notations, the Newton’s iterative scheme gets the form

s(n+1) = s(n) − Z2(s
(n))

Z5(s(n))
.

Now differentiating the last system of three first order ODEs with respect to s, we

get another system of ODEs, as follows

Z ′4 = Z5, Z4(0) = 0.

Z ′5 = Z6, Z5(0) = 0.

Z ′3 =

(
4n

n+ 1

)
Z2Z5 − Z1Z6 − Z4Z3 + (M +G)Z5, Z6(0) = 1.

The stopping criteria for the Newton’s technique is set as

| Z2(s) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.
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The equation (3.36) and (3.37) will also be numerically solved by using the shoot-

ing method with by assuming f as a known function. For this, we utilize the

following notions

θ = Y1, θ′ = Y ′1 = Y2, θ′′ = Y ′2 .

φ = Y3, φ′ = Y ′3 = Y4, φ′′ = Y ′4 .

A1 =

(
1 +

4

3
R

)
, C1 = f, C2 = f ′′.

As a result, the energy and concentration equation is transformed into the first-

order ODE system shown below. As a result, the energy and concentration equa-

tion is transformed into the first order ODE system shown below,

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −Pr
A1

(
C1Y2 +NbY2Y4 +NtY 2

2 + EcC2
2

)
, Y2(0) = p.

Y ′3 = Y4, Y3(0) = 1.

Y ′4 = −LeC1Y4 −
Nb

Nt

(
−Pr
A1

C1Y2 +NbY2Y4 +NtY 2
2 + EcC2

2

)
, Y4(0) = q.

In order to solve the aforementioned initial value problem, the RK-4 approach has 

been used. The missing conditions for the given system of equations should be 

chosen in such a way that

Y1(p, q) = 0, Y3(p, q) = 0.

Here Y1(p, q) and Y3(p, q) are the values of Y1 and Y3 at ε = ε∞ for some choice of 

the missing conditions p and q. To solve the above algebraic equations, we apply
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the Newton’s method which has the following scheme,

p(n+1)

q(n+1)

 =

p(n)
q(n)

−(
∂Y1∂p ∂Y1

∂q

∂Y3
∂p

∂Y3
∂q

−1 Y1
Y3

)
(p(n),q(n))

Now, introduce the following notations.

∂Y1
∂p

= Y5,
∂Y2
∂p

= Y6,
∂Y3
∂p

= Y7,
∂Y4
∂p

= Y8.

∂Y1
∂q

= Y9,
∂Y2
∂q

= Y10,
∂Y3
∂q

= Y11,
∂Y4
∂q

= Y12.

As a result of these new notations, the Newton’s iterative scheme gets the form:

p(n+1)

q(n+1)

 =

p(n)
q(n)

−(
Y5 Y9

Y7 Y11

−1 Y1
Y3

)
(p(n),q(n))

Now differentiating the last system of four first order ODEs first with respect to

p and q then with respect to get another system of ODEs, as follows,

Y ′5 = Y6, Y5(0) = 0.

Y ′6 =
−Pr
A1

[
C1Y6 +Nb(Y6Y4 + Y2Y8) + 2NtY2Y6

]
, Y6(0) = 1.

.Y ′7 = Y8, Y7(0) = 0.

Y ′8 = −LeC1Y8 −
Nt

Nb

[
−Pr
A1

(
C1Y6 +Nb

(
Y6Y4 + Y2Y8

)
+ 2NtY2Y6

)]
,

Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 =
−Pr
A1

[
C1Y10 +Nb(Y10Y4 + Y2Y12) + 2NtY2Y10

]
, Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y ′12 = −LeC1Y12 −
Nt

Nb

[
−Pr
A1

[
C1Y10 +Nb(Y10Y4 + Y2Y12) + 2NtY2Y10

]]
,

Y12(0) = 1.
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The stopping criteria for the Newton’s method is set as.

max{|Y1(p, q)|, |Y3(p, q)|} < ε.

3.4 Representation of Graphs and Tables

The impact of dimensionless parameters on the skin friction coefficient (Rex)
1
2Cf ,

local Nusselt number (Rex)
− 1

2Nux and local Sherwood number (Rex)
− 1

2Shx. re-

spectively, has been throughly discussed in the graphs and tables. Table 3.1 ex-

plains the impact of nonlinear stretching parameter n, magnetic parameter M ,

thermal radiation parameter R, Eckert number Ec and Lewis number Le on

(Rex)
1
2Cf , (Rex)

−1
2 Nux and (Rex)

−1
2 Shx. For the rising values of M , the skin

fraction coefficient (Rex)
1
2Cf decreases. By increasing the values of Ec, the nu-

merical values of the local Nusselt number is decreased and local Sherwood number

is increased.

Figure 3.2 displays the impact of M on the velocity distribution. By rising the

values of M , the velocity distribution shows the decreasing behavior due to the

presence of the Lorentz force. Figure 3.3 describes the impact of M on the tem-

perature distribution. The temperature distribution expands by rising the values

of M . Figure 3.4 describes the impact of M , on the concentration distribution.

Rising the values of M , the concentration distribution is increased.

Figure 3.5 shows the impact of the thermal radiation R on θ(ζ). In this graph,

it can be observed that on rising values of R, the temperature profile θ(ζ) also

increases. So, with on increase in thermal the radiation R, the rate of heat transfer

reduces, and the temperature profile θ(ζ) rises.

Figures 3.6 and 3.7 show the impact of permeability parameter G. The velocity

profile f ′(ζ) declines as G grows, while the temperature profile θ(ζ) increases.The

effect of G on the concentration profile is depicted in figure 3.8. The concentration

distribution φ(ζ) is enlarged by expanding the values of G. Figure 3.9 shows the

influence of Prandtl number Pr on θ(ζ). By the rising values of Pr, the tempera-

ture profile θ(ζ) is decreased.
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Figure 3.10 shows the relationship between Lewis numbers Le and the dimensional

concentration distribution φ(ζ). Concentration profile is observed to decrease for

the rising values of Le and thus we get a small molecular diffusivity and thermal

boundary layer. As can be observed in Figure 3.11, increasing Eckert number Ec

result in an increases in the temperature profile.

Figure 3.12 and Figure 3.13 indicate the impact of Nb on the dimensionless tem-

perature and concentration distributions. The behavior of the temperature distri-

bution is increasing that for the and concentration profile is decreasing due to the

accelerating values of Nb.

Table 3.1: Results of (Rex)
1
2Cf , −(Rex)−

1
2Nux and −(Rex)−

1
2Shx some fixed

parameters
Pr = 6.2, G = 0.1, Nt = 0.1, Nb = 0.1

M n R Ec Le (Rex)
1
2Cf −(Rex)

−1
2 Nux −(Rex)

−1
2 Shx

0.0
2.0

1.0 0.1 5.0 -1.406633 0.869857 1.552562

0.1 -1.458652 0.858868 1.544917

0.2 -1.508998 0.840327 1.537633

0.1 0.0 -0.540147 0.552600 0.922921

1.0 -1.097633 0.716511 1.270009

3.0 -1.746965 0.974691 1.778412

2.0 0.0 1.052747 1.487514

0.4 0.972294 1.500372

0.8 0.891317 1.529852

1.0 0.0 0.986436 1.439643

0.2 0.722987 1.650481

0.4 0.458127 1.862488

0.1 6.0 0.844627 1.790302

7.0 0.836676 2.012233

8.0 0.830314 2.216101
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Figure 3.2: Impact of M on the velocity profile.
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Figure 3.3: Impact of M on the temperature profile.
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Figure 3.4: Impact of M on the concentration profile.
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Figure 3.5: Impact of R on the temperature profile.
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Figure 3.6: Impact of G on the velocity profile.
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Figure 3.7: Impact of G on the temperature profile.
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Figure 3.8: Impact of G on the concentration profile.
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Figure 3.9: Impact of Pr on the temperature profile.
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Figure 3.10: Impact of Le on the concentration profile.
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Figure 3.11: Impact of Ec on the temperature profile.
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Figure 3.12: Impact of Nb on the temperature profile.
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Figure 3.13: Impact of Nb on the concentration profile.



Chapter 4

Effect of Heat Generation and

Chemical Reaction on MHD

Fluid Flow over a Nonlinear

Stretching Sheet

4.1 Introduction

This chapter contains the extension of the model [44] by considering aligned mag-

netic field in momentum equation. The heat generation are also included in the 

temperature equation. Furthermore chemical reaction is also taken into concen-

tration equation. The governing nonlinear PDEs are converted into a system of 

dimensionless ODEs by utilizing the similarity transformations.

The numerical solution of ODEs is obtaind by applying numerical method known 

as shooting method. At the end of this chapter, the final results are discussed for 

significant parameters affecting f ′(ζ), θ(ζ) and φ(ζ) which are shown in tables and 

graphs.

44
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4.2 Mathematical Modeling

It is aimed to analyse the 2D, MHD flow of nanofluid past a nonlinear stretching

sheet and porous medium. y > 0 was occupied by the flow. The horizontal axis is

used to apply a magnetic field of intensity B. In addition, x-axis is aligned with

the flow direction, whereas the y- axis is perpendicular to it. Thermal radiation,

viscous dissipation, and heat creation are all considered in the energy transport

study. Moreover, the concentration equation under the effect of chemical reaction.

By considering the above assumptions, the governing PDEs are.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂y2

)
− ν

k
u− σB2(x)

ρf
sin2(γ)u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+

ν

Cp

(
∂u

∂y

)2

− 1

(ρCp)f

(
∂qr
∂y

)

+
q

(ρCp)f
(T − T∞) + τ

(
DB

∂C

∂y

∂T

∂x
+
DT

T∞

(
∂T

∂y

)2
)
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
−Kr(C − C∞). (4.4)

The associated BCs have been taken as.

u = Uw(x) = axn, v = 0, T = Tw, C = Cw at y = 0.

u→ 0, T → T∞, C → C∞ as y →∞.

 (4.5)

Following similarity transformation has been used to convert PDEs (4.1)-(4.4) into

system of ODEs.

ζ = y

√
a(n+ 1)

2ν
x

n−1
2 , u = axnf ′(ζ)

v = −x
n−1
2

√
νa(n+ 1)

2

(
f(ζ) +

(
n− 1

n+ 1

)
ζf ′(ζ)

)
θ(ζ) =

T − T∞
Tw − T∞

, φ(ζ) =
C − C∞
Cw − C∞

.


(4.6)
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where ζ denotes the similarity variable, f , θ, and φ are the dimensionless velocity,

temperature and concentration.

The detailed procedure for the conversion of (4.1) has been discussed in chapter

3.

∂u

∂x
+
∂v

∂y
= 0. (4.7)

Now, I include the below procedure for the conversion of (4.2) into the dimension-

less form.

u = axnf ′(ξ). (4.8)

v = −xn−1ay
(
n− 1

2

)
f ′(ζ)− x

n−1
2

(
n+ 1

2

)√
2νa

n+ 1
f(ζ). (4.9)

The complete procedure for the conversion of (4.2) discussed in chapter 3.

f ′′′ + ff ′′ −
(

2n

n+ 1

)
f ′2 −

(
Msin2(γ) +G

)
f ′ (4.10)

Now, we include below the procedure for the conversion of equation (4.3) into the 

dimensionless form. The (4.11)-(4.17) we have already derived in chapter 3.

∂u

∂x
= ax

3n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
f ′′(ζ) + naxn−1f ′(ζ). (4.11)

∂u

∂y
= ax

3n−1
2

√
(n+ 1)a

2ν
f ′′(ζ). (4.12)

∂T

∂x
= x

n−3
2 y

(
n− 1

2

)√
(n+ 1)a

2ν
(Tw − T∞)θ′(ζ). (4.13)

∂T

∂y
= x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ζ). (4.14)

∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ζ). (4.15)

∂C

∂y
= x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ζ). (4.16)(

∂T

∂y

)2

= xn−1
(n+ 1)a

2ν
(Tw − T∞)2θ′2(ζ). (4.17)
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τ

(
DB

(
∂T

∂y

∂C

∂y

)
+
DT

T∞

(
∂T

∂y

)2
)

= τ

(
DT

T∞
xn−1

(n+ 1)a

2ν
(Tw − T∞)2θ′2(ζ)

)

+ τ

(
DB

[
x

n−1
2

√
(n+ 1)a

2ν
(Tw − T∞)θ′(ζ)

][
x

n−1
2

√
(n+ 1)a

2ν
(Cw − C∞)φ′(ζ)

])
,

= τDBx
n−1
(

(n+ 1)a

2ν

)
(Tw − T∞)(Cw − C∞)θ′(ζ)φ′(ζ)

+ τ
DT

T∞
xn−1

(
(n+ 1)a

2ν

)
(Tw − T∞)2θ′2(ζ),

=
τDB(Cw − C∞)

ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(ζ)φ′(ζ)

+
τDT (Tw − T∞)

T∞ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′2(ζ),

= axn−1

(
n+ 1

2

)
Nb(Tw − T∞)θ′(ζ)φ′(ζ)

+ axn−1

(
n+ 1

2

)
Nt(Tw − T∞)θ′2(ζ),

= axn−1

(
n+ 1

2

)
(Tw − T∞)

(
Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ)

)
. (4.18)

Left hand side of (4.3)

= −axn−1
(n+ 1

2

)
(Tw − T∞)f(ζ)θ′(ζ) (4.19)

Right hand side of (4.3)

= αaxn−1

(
n+ 1

2ν

)
(Tw − T∞)θ′′(ζ) +

ν

cp
a3x3n−1

(
n+ 1

2ν

)
f ′′2(ζ)

− 1

(ρCp)f

16σ∗T 3
∞

3k∗
axn−1(Tw − T∞)

(
n+ 1

2ν

)
θ′′(ζ) +

q

(ρCp)f
(Tw − T∞)θ(ζ)

+ axn−1

(
n+ 1

2

)
(Tw − T∞)

(
Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ)

)
. (4.20)

Comparing (4.19) and (4.20)

− axn−1
[(

n+ 1

2

)
(Tw − T∞)f(ζ)θ′(ζ)

]
= α

[
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ)

]
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τDB(Cw − C∞)

ν
xn−1

(
(n+ 1)a

2

)
(Tw − T∞)θ′(ζ)φ′(ζ) +

τDT (Tw − T∞)

T∞ν
,

xn−1
(

(n+ 1)a

2

)
(Tw − T∞)θ′2(ζ) +

ν

Cp

(
a2x3n−1

(
a(n+ 1)

2ν

)
f ′′2(ζ)

)
− 1

(ρCp)f

(
16σ∗T 3

∞
3k∗

(Tw − T∞)xn−1
(
a(n+ 1)

2ν

)
θ′′(ζ)

)
+

q

(ρCp)f
(Tw − T∞)θ(ζ),

− f(ζ)θ′(ζ) =
(ρCp)p
(ρCp)f

DB(Cw − C∞)

ν
θ′(ζ)φ′(ζ) +

(ρCp)p
(ρCp)f

DT (Tw − T∞)

T∞ν
θ′2

+
ν

Cp(Tw − T∞)
a2x2nf ′′2 +

16σ∗T 3
∞

(ρCp)fν3k∗
θ′′(ζ) +

α

ν
θ′′(ζ) +

q

(ρCp)f

2

a(n+ 1)xn−1
,

− f(ζ)θ′(ζ) =
1

Pr
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + Ecf ′′2 +

4

3Pr
Rθ′′ +

2

n+ 1
Qθ

− f(ζ)θ′(ζ) =
1

Pr

(
1 +

4

3
R

)
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ)

+ Ecf ′′2(ζ) +

(
2

n+ 1

)
Qθ(ζ),

1

Pr

(
1 +

4

3
R

)
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + f(ζ)θ′(ζ)

+ Ecf ′′2(ζ) +

(
2

n+ 1

)
Qθ(ζ) = 0,(

1 +
4

3
R

)
θ′′(ζ) + Pr

(
f(ζ)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ)

+ Ecf ′′2(ζ) +

(
2

n+ 1

)
Qθ(ζ)

)
= 0. (4.21)

Now, we include below the procedure for the conversion of equation (4.4) into the

dimensionless form.

φ(η) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)φ(ζ) + C∞.

∂C

∂x
= (Cw − C∞)φ′(ζ)

∂ζ

∂x
,

∂C

∂x
=

(
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ). (4.22)

∂C

∂y
= (Cw − C∞)φ′(ζ)

∂ζ

∂y
,

∂C

∂y
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ). (4.23)
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∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ)

∂ζ

∂y
,

∂2C

∂y2
= x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ)

(
x

n−1
2

√
a(n+ 1)

2ν

)
,

∂2C

∂y2
= xn−1

(√
a(n+ 1)

2ν

)2

(Cw − C∞)φ′′(ζ),

∂2C

∂y2
= xn−1

a(n+ 1)

2ν
(Cw − C∞)φ′′(ζ). (4.24)

∂2T

∂y2
= xn−1

a(n+ 1)

2ν
(Tw − T∞)θ′′(ζ). (4.25)

Using (4.22) and (4.23) in left hand side of (4.4)

u
∂C

∂x
+ v

∂C

∂y
= axnf ′(ζ)

((
n− 1

2

)
x

n−3
2 y

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ)

)

+

(
n− 1

2
xn−1yaf ′(ζ)− x

n−1
2
n+ 1

2

√
2νa

n+ 1
f(ζ)

)
x

n−1
2

√
a(n+ 1)

2ν
(Cw − C∞)φ′(ζ),

u
∂C

∂x
+ v

∂C

∂y
= ax

3n−3
2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ζ)φ′(ζ)

− x
3n−3

2 y

(
n− 1

2

)√
a(n+ 1)

2ν
(Cw − C∞)f ′(ζ)φ′(ζ)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ),

u
∂C

∂x
+ v

∂C

∂y
= −axn−1

(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ). (4.26)

Using (4.24) and (4.25) in right hand side of (4.4)

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−Kr(C − C∞) = DBx

n−1
(
a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ζ)

+
DT

T∞
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ)−Kr(Cw − C∞)φ(ζ). (4.27)

Comparing (4.26) and (4.27)

− axn−1
(
n+ 1

2

)
(Cw − C∞)f(ζ)φ′(ζ) = DBx

n−1

(
a(n+ 1)

2ν

)
(Cw − C∞)φ′′(ζ)
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+
DT

T∞
xn−1

(
a(n+ 1)

2ν

)
(Tw − T∞)θ′′(ζ)−Kr(Cw − C∞)φ(ζ).

Dividing both side DBx
n−1a

(
n+1
2ν

)
(Cw − C∞)

− ν

DB

f(ζ)φ′(ζ) = φ′′(ζ) +
DT (Tw − T∞)

T∞DB(Cw − C∞)
θ′′(ζ)− Kr2ν

DB(n+ 1)axn−1
φ(ζ),

h′′(ζ) + Lef(ζ)φ′(ζ) +
DT τ(Tw − T∞)ν

T∞νDBτ(Cw − C∞)
θ′′(ζ)− ν

DB

2Kr

(n+ 1)axn−1
φ(ζ) = 0,

φ′′(ζ) + Lef(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ)− γ2Leφ(ζ) = 0. (4.28)

Now discussing the procedure for conversion of boundary conditions into dimen-

sionless form.

u = Uw(x) = axn, at y = 0.

u = af ′(ζ)xn,

⇒ af ′(ζ)xn = axn,

⇒ axnf ′(ζ) = axn,

⇒ f ′(ζ) = 1, at ζ = 0.

⇒ f ′(0) = 1.

v = 0, at y = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2

(
f(ζ) + ζf ′(η)

(
n− 1

n+ 1

))
= 0, at ζ = 0.

⇒ − x
n−1
2

√
(n+ 1)νa

2
f(ζ) = 0, at ζ = 0.

⇒ f(ζ) = 0,

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ζ)(Tw − T∞) + T∞ = Tw,

⇒ θ(ζ)(Tw − T∞) = (Tw − T∞),

⇒ θ(ζ) = 1, at ζ = 0.

⇒ θ(0) = 1.
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C = Cw, at y = 0.

⇒ φ(ζ)(Cw − C∞) + C∞ = Cw,

⇒ φ(ζ)(Cw − C∞) = (Cw − C∞),

⇒ φ(ζ) = 1, at ζ = 0.

⇒ φ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ζ)xn → (0),

⇒ f ′(ζ)→ (0), as ζ →∞.

⇒ f ′(ζ)→ 0.

T → T∞, as y →∞.

⇒ θ(ζ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ζ)(Tw − T∞)→ 0,

⇒ θ(ζ)→ 0, as ζ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ζ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ζ)(Cw − C∞)→ 0,

⇒ φ(ζ)→ 0, as ζ →∞.

⇒ φ(∞)→ 0.

The final dimensionless form of the governing model, is

f ′′′(ζ) + f(ζ)f ′′(ζ))−
(

2n

n+ 1

)
f ′2(ζ)−

(
M sin2(γ) +G

)
f ′(ζ) = 0. (4.29)(

1 +
4

3
R

)
θ′′(ζ) + Pr

(
f(ζ)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ)

+ Ecf ′′2(ζ) +
(n+ 1

2

)
Qθ(ζ)

)
= 0. (4.30)

φ′′(ζ) + Lef(ξ)φ′(ζ) +
Nt

Nb
θ′′(ζ)− γ1Leφ(ζ) = 0. (4.31)
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The associated BCs (4.5) in the dimensionless form are,

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0.

 (4.32)

Different parameters used in equations (4.29)-(4.31) are formulated as follows.

M =
σB2

0

ρfax−1
, K =

ν

ak0
, G =

v

k
, γ1 =

2Kr

(n+ 1)axn−1
,

P r =
ν

α
, Ec =

U2
w

(cp)f (Tw − T∞)
, Q =

qx

(ρcp)fUw
, Le =

ν

DB

,

Nb =
τDB(Cw − C∞)

ν
, Nt =

τDT (Tw − T∞)

T∞ν
, R =

4σ∗T 3
∞

kk∗
.

4.3 Solution Methodology

In order to solve the system of ODEs (4.29) the shooting method has been used.

The following notations have been cosidered.

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

By using the notations, the equation (4.29) is converted into first order ODEs.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 0.

Y ′3 =

(
2n

n+ 1

)
Y 2
2 − Y1Y3 + (Msin2γ +G)Y2, Y3(0) = s.

The above initial value problem will be numerically solved by RK-4. The missing

condition ‘s’ assumed to satisfy the following relation.

Y2(ζ∞)s = 0.
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To solve the above algebaric equations we use the Newton’s method which has the

following iterative scheme.

sn+1 = sn − (Y2(ζ∞))s=sn(
∂Y2(ζ∞)

∂s

)
s=sn

.

We further introduce the following notations,

∂Y1
∂s

= Y4,
∂Y2
∂s

= Y5,
∂Y3
∂s

= Y6.

As a result of these new notations, the Newton’s iterative scheme.

sn+1 = sn − (Y2(ζ∞))s=sn

(Y5(ζ∞))s=sn
.

Now differentiating system of three first order ODEs with respect to s, we get

three more ODEs.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 =

(
4n

n+ 1

)
Y2Y5 − Y1Y6 − Y4Y3 + (Msin2γ +G)Y5, Y6(0) = 1.

The missing condition s is updated by the Newton’s method and process will be

continued until the following criteria is met.

| (Y2(ζ∞))s=sn |< ε.

where ε is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

Also, for equations (4.30) and (4.31), the following notation have been used.

θ = Z1, θ′ = Z ′1 = Z2, θ′′ = Z ′2.

φ = Z3, φ′ = Z ′3 = Z4, φ′′ = Z ′4.

A1 =

(
1 +

4

3
R

)
, A2 =

(
2

n+ 1

)
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The system of equations (4.30) and (4.31), can be written in the form of the

following first order coupled ODEs.

Z ′1 = Z2, Z1(0) = 1.

Z ′2 = −Pr
A1

(
C1Z2 +NbZ2Z4 +NtZ2

2 + EcC2
2 + A2QZ1

)
, Z2(0) = l.

Z ′3 = Z4, Z3(0) = 1.

Z ′4 = −LeC1Z4 + γ2LeZ3 +
Nb

Nt

(
Pr

A1

(
C1Z2 +NbZ2Z4

+NtZ2
2 + EcC2

2 + A2QZ1

))
, Z4(0) = m.

In order to solve the above mentioned initial value problem, the RK-4 approach

has been used. The missing condition for the above system of equation should be

chosen in such a way that.

(Z1(l,m))ζ=ζ∞ = 0, (Z3(l,m))ζ=ζ∞ = 0.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

 ln+1

mn+1

 =

 ln
mn

−
∂Z1

∂l
∂Z1

∂m

∂Z3

∂l
∂Z3

∂m

−1 Z1

Z3


Now, introduce the following notations,

∂Z1

∂l
= Z5,

∂Z2

∂l
= Z6,

∂Z3

∂l
= Z7,

∂Z4

∂l
= Z8.

∂Z1

∂m
= Z9,

∂Z2

∂m
= Z10,

∂Z3

∂m
= Z11,

∂Z4

∂m
= Z12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

 ln+1

mn+1

 =

 ln
mn

−
Z5 Z9

Z7 Z11

−1 Z1

Z3
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Now differentiating the system of four first order ODEs with respect to l, and m

we get another system of ODEs, as follows.

Z ′5 = Z6, Z5(0) = 0.

Z ′6 =
−Pr
A1

(
C1Z6 +Nb(Z6Z4 + Z2Z8 + 2NtZ2Z6 + A2QZ5

)
, Z6(0) = 1.

Z ′7 = Z8, Z7(0) = 0.

Z ′8 = −LeC1Z8 + γ2LeZ7 −
Nt

Nb

(
−Pr
A1

(
C1Z6 +Nb(Z6Z4 + Z2Z8)

+ 2NtZ2Z6 + A2QZ5

))
, Z8(0) = 0.

Z ′9 = Z10, Z9(0) = 0.

Z ′10 =
−Pr
A1

(
C1Z10 +Nb(Z10Z4 + Z2Z12) + 2NtZ2Z10 + A2QZ9

)
, Z10(0) = 0.

Z ′11 = Z12, Z11(0) = 0.

Z ′12 = −LeC1Z12 + γ2LeZ11 −
Nt

Nb

(
−Pr
A1

(
C1Z10 +Nb(Z10Z4 + Z2Z12)

+ 2NtZ2Z10 + A2QZ9

))
, Z12(0) = 1.

The stopping criteria for the Newton’s method is set as.

max{|Z1(ζ∞)|, |Z3(ζ∞)|} < ε.

4.4 Representation of Graphs and Tables

The principle object is about to examine the impact of different parameters against

the velocity , temperature and concentration distribution. The impact of different

factors like nonlinear stretching parameter n, magnetic parameter M, thermal ra-

diation R and Lewis number Le is observed graphically.

Numerical outcomes of the skin friction coefficient, local Nusselt number and local

Sherwood number for the distinct values of some fixed parameters are shown in

Tables 4.1-4.2.
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Figure 4.1 displays the impact of M , on the velocity distribution. The rising values

of M , shows decreasing behavior of velocity profile.Because M denotes the ratio

of Lorentz forces to viscous forces, an increase in M causes the Lorentz force to

become dominant, lowering the velocity of the fluid. Figure 4.1 describes the im-

pact of M on θ(ζ). The temperature distribution expands by enhancing the values

of M . Figure 4.3 describes the impact of M , on the concentration distribution.

Rising the values of M , the concentration distribution h(ζ) is increased due to the

presence of Lorentz force.

Figure 4.4 shows the impact of thermal radiationR on the temperature distribution

θ(ζ). By enhancing the values of R, the temperature distribution θ(ζ) is increased.

Figures 4.5 and 4.6 show the impact of permeability parameter G. For the ris-

ing values of G, the velocity profile f ′(ζ) decreases and temperature profile θ(ζ)

increases. Figure 4.7 shows the impact of G on the concentration profile. By

expanding the values of G, the concentration distribution φ(ζ) is increased.

The impact of the Prandtl number Pr on temperature distributions is shown in

Figure Figure 4.8. Because Pr is directly proportional to the viscous diffusion rate

and inversely proportional to the thermal diffusivity, when Pr rises, the thermal

diffusion rate decreases, and the fluid’s temperature lowers substantially. There

has also been a drop in the thickness of the thermal boundary layer.

Figure 4.9 shows the relationship between Lewis numbers Le and the dimensional

concentration distribution. Concentration profile decreasing for the rising values of

Le and thus we have get a small molecular diffusivity and thermal boundary layer.

The impact of the Eckert number Ec on θ(ζ) is shown in Figure 4.10. The ratio of

kinetic energy and enthalpy change of flow is defined by the Eckert number. The

increase in θ(ζ) is clearly demonstrated by increasing the values of Ec due to the

decrease in heat transfer rate.

Figure 4.11 and Figure 4.12 indicate the impact of Nb on the dimensionless tem-

perature and concentration distribution. The behavior of temperature distribution

is increased and concentration profile is decreased due to the accelerating values
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of Nb.

Figure 4.13 depicts the effect of heat generation Q on θ(ζ). It is noticed that

as Q grows, more heat is generated, resulting in an increase in θ(ζ) and thermal

boundary layer thickness.

Figure ref4.14 shows that increasing the value of the chemical reaction parameter

γ1 decreases the concentration profile.

Table 4.1: Results of (Rex)
1
2Cf for fixed parameter γ = π/3

n M G (Rex)
1
2Cf

2.0 0.0 0.1 -1.148511

2.0 0.1 0.1 -1.190984

2.0 0.2 0.1 -1.230917

2.0 0.3 0.1 -1.271937

2.0 0.1 0.0 -1.148518

2.0 0.1 0.1 -1.909850

2.0 0.1 0.2 -1.233099

2.0 0.1 0.3 -1.232092

3.0 0.5 0.3 -1.348219

3.0 0.6 0.3 -1.384820

3.0 0.3 0.5 -1.420492

3.0 0.3 0.6 -1.455298

3.0 0.3 0.7 -1.489297

0.1 2.0 2.0 2.612924

0.1 2.0 2.0 -2.774333

4.0 0.0 0.1 -1.248511
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Table 4.2: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx some fixed parameters

γ = π/3, n = 2.0, Ec = 0.1, Q = 0.1, Nt = Nb = 0.1

M R Pr γ1 Le G −(Rex)
−1
2 Nux −(Rex)

−1
2 Shx

0.1 0.1 6.2 0.5 5.0 0.1 0.306217 1.921066

0.5 0.1 6.2 0.5 5.0 0.1 0.260764 1.879936

0.8 0.1 6.2 0.5 5.0 0.1 0.227314 1.852385

1.0 0.1 6.2 0.5 5.0 0.1 0.216324 0.227314

0.1 0.2 6.2 0.5 5.0 0.1 0.343682 1.910956

0.1 0.5 6.2 0.5 5.0 0.1 0.41531 5 1.889407

0.1 1.0 6.2 0.5 5.0 0.1 0.465659 1.870425

0.1 0.1 6.2 0.5 1.0 0.1 0.789389 0.590562

0.1 0.1 6.2 0.5 1.5 0.1 0.648659 0.827584

0.1 0.1 6.2 0.5 2.0 0.1 0.548951 1.036722

0.1 0.1 6.2 0.5 5.0 0.3 0.282851 1.899805

0.1 0.1 6.2 0.5 5.0 0.5 0.261016 1.879936

0.1 0.1 6.2 0.5 5.0 0.7 0.238115 1.861293

0.1 0.1 6.2 0.5 5.0 1.0 0.206133 1.861393

0.1 0.1 6.2 0.5 5.0 0.1 0.240460 1.835321

0.1 0.1 6.2 1.0 5.0 0.1 0.885558 1.45352

0.1 0.1 6.2 1.5 5.0 0.1 0.885558 1.453525

0.1 0.1 6.2 2.0 5.0 0.1 0.885558 1.453525

0.1 0.1 6.2 2.5 5.0 0.1 0.885558 1.453525

0.1 0.1 6.2 0.3 5.0 0.1 0.885556 1.453525

0.1 0.1 7.0 0.5 6.0 0.1 0.896640 1.459844

0.1 0.1 7.3 0.5 5.0 0.1 0.899149 1.463170

0.1 0.1 7.5 0.5 5.0 0.1 0.900381 1.465642

0.1 0.1 7.6 0.5 5.0 0.1 0.902055 1.472645
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Figure 4.1: Impact of M on the velocity profile.
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Figure 4.2: Impact of M on the temperature profile.
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Figure 4.3: Impact of M on the concentration profile.
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Figure 4.4: Impact of R on the temperature profile.
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Figure 4.5: Impact of G on the velocity profile.
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Figure 4.6: Impact of G on the temperature profile.
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Figure 4.7: Impact of G on the concentration profile.
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Figure 4.8: Impact of Pr on the temperature profile.
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Figure 4.9: Impact of Le on the concentration profile.
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Figure 4.10: Impact of Ec on the temperature profile.
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Figure 4.11: Impact of Nb on the temperature profile.
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Figure 4.12: Impact of Nb on the concentration profile.
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Figure 4.13: Impact of Q on the temperature profile.
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Figure 4.14: Impact of γ1 on the concentration profile.



Chapter 5

Conclusion

In this thesis, the work of Rao et al is reviewed and extended with the effect

of inclined magnetic field, heat generation and chemical reaction. First of all,

momentum, energy and concentration equations are converted into the ODEs by

using some similarity transformations. By using the shooting method, numerical

solution has been found for the transformed ODEs. Using different values of the

governing physical parameters, the results are presented in the form of tables and

graphs for velocity, temperature and concentration profiles. The achievements of

the current research can be summarized as below:

• Increasing the values of M , the velocity profile decreases while the temper-

ature profile increases.

• A decrement is noticed in Nusselt number due to ascending values of Lewis

number.

• The velocity profile is decreased due to the increasing values of the perme-

ability paramater G.

• By increasing the values of chemical reaction γ1, the concentration profile

decreased.

• By increasing the values of M , the concentration profile increased.
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• Rising the values of heat generation parameter Q results in increase the

temperature profile.

• An increment is noticed in the temperature distribution by rising the values

of Eckert number Ec.

• With a rise in Nb, the temperature profile increases.

• Due to the ascending values of Le, the numerical values of local Shx is

increased.
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